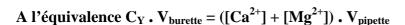
DOSAGE COMPLEXOMETRIQUE

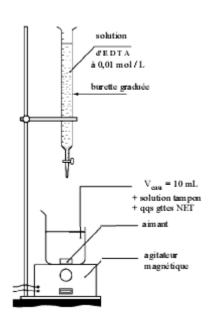
Observations préliminaires :

- ➤ Solution CuSO₄ : ajouter très peu de solution de NH₃, observer puis rajouter de l'ammoniac. Que se passe-t-il ? Ecrire la réaction de complexation entre Cu²⁺_(aq) et NH_{3(aq)}. Nommer le complexe.
- \gt Solution Fe(NO₃)₃ [quelques gouttes diluées] : ajouter du thiocyanate de potassium (K⁺+ SCN⁻). Que se passe-t-il ? Ecrire la réaction de complexation entre Fe³⁺_(aq) et SCN⁻_(aq). Nommer le complexe.

Dureté de l'eau

Information théorique


La dureté d'une eau ou titre hydrotimétrique (°TH) correspond à la concentration totale des ions Ca^{2+} et Mg^{2+} . $Ct = [Ca^{2+}] + [Mg^{2+}]$. $1^{\circ}TH \leftrightarrow 10^{-4} \text{ mol.L}^{-1}$


L'eau du robinet doit avoir un titre inférieur à 30°TH. Si le titre est inférieur à 15°TH, l'eau dite « douce », sinon elle est dite « dure » voire « très dure » au-dessus de 35°TH

Pour doser les ions Ca^{2+} et Mg^{2+} , on utilise les réactions de complexation en milieu basique avec un indicateur de fin de réaction $Ca^{2+} + Y^{4-} = CaY^{2-}$ et $Mg^{2+} + Y^{4-} = MgY^{2-}$

Mode opératoire (lunettes)

- Remplir une burette graduée avec une solution d'E.D.T.A. de concentration $C_Y = 0.010 \text{ mol.L}^{-1}$
- Introduire environ 5 mL de solution tampon (pH = 10), puis ajouter une petite pointe spatule de NET. Noter la teinte.
- Prélever, avec une pipette jaugée, un volume V = 10,0 mL d'eau minérale et verser le verser dans un bécher. Noter la teinte.
- Ajouter la solution d'E.D.TA. jusqu'au virage au bleu clair de la solution. (L'indicateur NET est bleu en milieu basique mais forme avec Ca²⁺ un complexe *net-Ca* rose. Ce complexe disparait au profit du complexe *edta-Ca* incolore et la couleur de la solution redevient bleue)
- Faire un dosage précis et 2 dosages précis cohérents.
- Déterminer la concentration totale $Ct = [Ca^{2+}] + [Mg^{2+}]$ et la dureté de cette eau.(*l'eau minérale choisie est très dure*)

Complément:

Pour doser les ions Ca²⁺, seuls, on remplace la solution tampon par une solution de soude à 1 mol/L (faisant précipiter Mg²⁺) et on utilise l'indicateur *Patton et Reeder* (à la place du NET). Le virage se fait par le passage d'une teinte rose à une teinte violette (utiliser une solution témoin pour repérer le virage)

- Déterminer $[Ca^{2+}]$ de la même façon que précédemment C_Y $V'_{burette} = [Ca^{2+}]$ $V_{pipette}$
- Calculer $[Mg^{2+}] = Ct-[Ca^{2+}]$
- Calculer les concentrations massiques ρ_{Ca} et ρ_{Mg} .
- Comparer aux valeurs données sur l'étiquette de la bouteille d'eau.

$$(M_{Ca} = 40,1 \ g.mol^{\text{-}1} \ et \ M_{Mg} = 24,3 \ g.mol^{\text{-}1})$$

<u>Matériel (élève)</u>: eau Hépar ou Contrex (80mL), EDTA (120 mL à 0,01 mol/L), NET, Patton et Reeder, Tampon 10 (50mL), NaHO molaire (50mL), solutions : NH_3 molaire (10mL), solutions $CuSO_4$, $Fe(NO_3)_3$, KCN (2mL à 10^2 mol/L), pipette 10 mL, burette, agitateur + barreau.