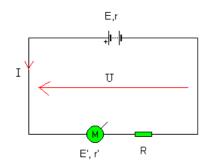

Résistance équivalente



Loi d'Ohm

Loi de Pouillet

En ramenant le circuit à un circuit comprenant un générateur, un récepteur et un conducteur ohmique en série.

$$I = \frac{E - E'}{R + r + r'}$$

Puissance en watts (w)

Pe= U.I (formule générale) puissance aux bornes du dipôle

Conducteur ohmique	Générateur	Récepteur
$Pe = RI^2$	Pe = Pt-Pj	Pe= Pu+Pj
(dissipée en chaleur par effet joule)	Pt =EI et Pj=rI ² (effet joule)	Pu =E'I et Pj= r'I ² (effet joule)
	η= Pe/Pt	η= Pu/Pe

Énergie fournie ou dissipée durant le temps t en joules (J) W =P.t (formule générale)

Conducteur ohmique	Générateur	Récepteur
We=Q= RI ² .t	We = Wt-Qj	We = Wu+Qj
(dissipée en chaleur)	Wt =EI.t et Qj=rI ² .t (chaleur)	Wu =E'I.t et Qj= r'I ² .t (chaleur)